Rev Med UAS
Vol. 14: No. 1. Enero-Marzo 2024
ISSN 2007-8013

Señalización purinérgica: Rutas metabólicas y vías de señalización asociadas al cáncer

Purinergic signaling: Metabolic pathways and signaling pathways associated with cancer

Ricardo Martínez-Zavala1, Laura G. Hernández-Aragón1, José Everardo Avelino-Cruz2, Fabián Galindo-Ramírez1*

  1. Laboratorio de Cáncer y Comunicación Intercelular, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla.
  2. Laboratorio de Cardiología molecular, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla.

*Autor de correspondencia: Fabián Galindo-Ramírez.
Laboratorio de Cáncer y Comunicación Intercelular, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla.
14 Sur, 6301, Colonia San Manuel, Ciudad Universitaria Puebla. Puebla, México. C.P. 72570.
Email: fabgalindoram@gmail.com

DOI http://dx.doi.org/10.28960/revmeduas.2007-8013.v14.n1.010

Texto Completo PDF

Recibido 25 de abril 2023, aceptado 07 de diciembre 2023


RESUMEN
Las acciones de los receptores purinérgicos en las células dependen del subtipo de receptor, el tipo celular y de su condición (sana o tumoral). El objetivo de esta revisión es identificar y analizar las rutas metabólicas dependientes de la activación purinérgica asociadas a la progresión del cáncer. En diferentes tipos de cáncer, se ha observado que el ATP está incrementado en el microambiente tumoral y participa en el mantenimiento, proliferación, migración y supervivencia de las células tumorales, a través de los receptores purinérgicos P2. Además, el ATP puede ser degradado a adenosina, la cual, se ha relacionado con la supervivencia y proliferación mediante la activación de receptores P1 en células cancerígenas. Se ha propuesto que la reducción de las concentraciones extracelulas de ATP, adenosina y la activación de receptores purigérgicos sería de gran relevancia en la aplicación de diferentes tratamientos antitumorales.
Palabras clave: ATP, adenosina, nucleotidasas, receptores purinérgicos, cáncer.

ABSTRACT
The actions of Purinergic receptors on the cells depend on receptor subtype, cell types, and health conditions (normal or tumoral cells). This review aims to identify and analyze metabolic pathways depending on purinergic receptors associated with cancer cell progression. In different kinds of cancer, ATP was seen to increase in the tumor microenvironment, and participates in the maintenance, proliferation, migration, and survival, through purinergic receptors P2. In addition, ATP can be degraded to adenosine, which has also been linked to survival and proliferation through the activation of P1 receptors in cancer cells. It has been proposed that reducing the concentration of extracellular ATP, adenosine, and the activation of purinergic receptors would be of great relevance in the application of different antitumor treatments.
Keywords: ATP, adenosine, nucleotidases, purinergic receptors, cancer.


Referencias

  1. Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol. 1929;68(3):213–37.
  2. Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27(3):166–76.
  3. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24(3):509–81.
  4. Newby AC. Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sci. 1983;8:42–44.
  5. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev. 2018;98(3):1591–625.
  6. Verkhratsky A, Burnstock G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. BioEssays. 2014;36(7):697–705.
  7. Björkgren I, Lishko PV. Purinergic signaling in testes revealed. J Gen Physiol. 2016;148(3):207–11.
  8. Piirainen H, Ashok Y, Nanekar RT, Jaakola VP. Structural features of adenosine receptors: from crystal to function. Biochim Biophys Acta. 2011;1808(5):1233–44.
  9. Allen-Gipson DS, Wong J, Spurzem JR, Sisson JH, Wyatt TA. Adenosine A2A receptors promote adenosine-stimulated wound healing in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L849–55.
  10. Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta. 2015;1848(10 Pt B):2584–602.
  11. Franco R, Cordomí A, Llinas Del Torrent C, Lillo A, Serrano-Marín J, Navarro G, et al. Structure and function of adenosine receptor heteromers. Cell Mol Life Sci. 2021;78(8):3957–68.
  12. Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021;178(3):489–514.
  13. Sattler C, Benndorf K. Enlightening activation gating in P2X receptors. Purinergic Signal. 2022;18(2):177–91.
  14. Schmid R, Evans RJ. ATP-gated P2X receptor channels: Molecular insights into functional roles. Annu Rev Physiol. 2019;81:43–62.
  15. Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol. 2021;187:114419.
  16. Rafehi M, Müller CE. Tools and drugs for uracil nucleotide-activated P2Y receptors. Pharmacol Ther. 2018;190:24–80.
  17. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer. 2018;18(10):601–18
  18. Draganov D, Lee PP. Purinergic signaling within the tumor microenvironment. Adv Exp Med Biol. 2021;1270:73–87.
  19. Ohta D, Lee PP. Purinergic signaling within the tumor microenvironment. Adv Exp Med Biol. 2012;1270:73–87.
  20. Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood. 2008;111:5571–80.
  21. Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol. 2016;7:109.
  22. Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol. 2011;61:301–32.
  23. Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: A feasible target for cancer therapy. Cells. 2020;9(11):2496.
  24. Alvarez CL, Troncoso MF, Espelt MV. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol. 2022;237(1):389–400.
  25. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One. 2008;3(7):e2599.
  26. Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP release by inflammatory cells. Int J Mol Sci. 2018;19(4):1222.
  27. Gilbert SM, Oliphant CJ, Hassan S, Peille AL, Bronsert P, Falzoni S, et al. ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene. 2019;38(2):194–208.
  28. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 2017;276(1):121–44.
  29. Jeffrey JL, Lawson KV, Powers JP. Targeting metabolism of extracellular nucleotides via inhibition of ectonucleotidases CD73 and CD39. J Med Chem. 2020;63(22):13444–65.
  30. Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997;57(13):2602–5.
  31. Qian Y, Wang X, Liu Y, Li Y, Colvin RA, Tong L, et al. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett. 2014;351(2):242–51.
  32. Lohman AW, Billaud M, Isakson BE. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res. 2012;95(3):269–80.
  33. Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, et al. Adenosine triphosphate release and P2 receptor signaling in Piezo1 channel-dependent mechanoregulation. Front Pharmacol. 2019;10:1304.
  34. Locovei S, Wang J, Dahl G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 2006;580(1):239–44.
  35. Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015;43(5):923–32.
  36. Narahari AK, Kreutzberger AJ, Gaete PS, Chiu YH, Leonhardt SA, Medina CB, et al. ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels. eLife. 2021;10:e64787.
  37. Boassa D, Qiu F, Dahl G, Sosinsky G. Trafficking dynamics of glycosylated pannexin 1 proteins. Cell Commun Adhes. 2008;15(1):119–32.
  38. Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, et al. P2X7 in cancer: From molecular mechanisms to therapeutics. Front Pharmacol. 2020;11:793.
  39. Grassi F, De Ponte Conti B. The P2X7 receptor in tumor immunity. Front Cell Dev Biol. 2021;9:694831.
  40. Alvarez CL, Troncoso MF, Espelt MV. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol. 2022;237(1):389–400.
  41. Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, et al. ATP and cancer immunosurveillance. EMBO J. 2021;40(13):e108130.
  42. Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol. 2008;142(4):627–37.
  43. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355–67.
  44. Sträter N. Ecto-5'-nucleotidase: Structure function relationships. Purinergic Signal. 2006;2(2):343–50. DOI: 10.1007/s11302-006-9000-8.
  45. Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783(5):673–94.
  46. Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. J Exp Clin Cancer Res. 2022;41(1):222.
  47. Katz S, Ayala V, Santillán G, Boland R. Activation of the PI3K/Akt signaling pathway through P2Y₂ receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys. 2011;513(2):144–52.
  48. Bilbao PS, Santillán G, Boland R. ATP stimulates the proliferation of MCF-7 cells through the PI3K/Akt signaling pathway. Arch Biochem Biophys. 2010;499(1-2):40–48.
  49. Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K, et al. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS One. 2013;8(4):e60184.
  50. Zhang JL, Liu Y, Yang H, Zhang HQ, Tian XX, Fang WG. ATP-P2Y2-β-catenin axis promotes cell invasion in breast cancer cells. Cancer Sci. 2017;108(7):1318–27.
  51. Song S, Jacobson KN, McDermott KM, Reddy SP, Cress AE, Tang H, et al. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Physiol Cell Physiol. 2016;310(2):C99–C114.
  52. Placet M, Arguin G, Molle CM, Babeu JP, Jones C, Carrier JC, et al. The G protein-coupled P2Y₆ receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1539–51.
  53. Wan H, Xie R, Xu J, He J, Tang B, Liu Q, et al. Anti-proliferative effects of nucleotides on gastric cancer via a novel P2Y6/SOCE/Ca2+/β-catenin pathway. Sci Rep. 2017;7(1):2459.
  54. Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int. 2020;20:110.
  55. Zhang Y, Cheng H, Li W, Wu H, Yang Y. Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer. 2019;145(4):1068–82.
  56. Zelentsova AS, Deykin AV, Soldatov VO, Ulezko AA, Borisova AY, Belyaeva VS, et al. P2X7 receptor and purinergic signaling: orchestrating mitochondrial dysfunction in neurodegenerative diseases. eNeuro. 2022;9(6):0092-22.2022.
  57. Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal. 2021;17(1):151–62.
  58. Vigano S, Alatzoglou D, Irving M, Menétrier-Caux C, Caux C, Romero P, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front Immunol. 2019;10:925.
  59. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
  60. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.
  61. Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1.
  62. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.
  63. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–9.
  64. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34.
  65. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12.
  66. Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.
  67. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.
  68. Sang N, He D, Qie S. Glutamine metabolism and cancer. In: Boffetta P, Hainaut P, editors. Encyclopedia of Cancer, Third Edition. Academic Press; 2019. p.179–86.
  69. Bernfeld E, Foster DA. Glutamine as an essential amino acid for KRas-driven cancer cells. Trends Endocrinol Metab. 2019;30(6):357–68.
  70. Savio LE, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse AT. Purinergic signaling in the modulation of redox biology. Redox Biol. 2021;47:102137.
  71. Patel D, Menon D, Bernfeld E, Mroz V, Kalan S, Loayza D, et al. Aspartate rescues S-phase arrest caused by suppression of glutamine utilization in KRas-driven cancer cells. J Biol Chem. 2016;291(17):9322–9.
  72. Li T, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2018;1063:13–32.
  73. Estévez-García IO, Cordoba-Gonzalez V, Lara-Padilla E, Fuentes-Toledo A, Falfán-Valencia R, Campos-Rodríguez R, et al. Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J Physiol Biochem. 2014;70(2):569–81.
  74. Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int J Mol Sci. 2021;22(11):5703.
  75. Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, et al. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review. Int J Mol Sci. 2021;22(19):10701.
  76. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510.
  77. Popova NV, Jücker M. The role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci. 2021;22(4):1743.
  78. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88.
  79. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, et al. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021;6(1):162.
  80. Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharmacol. 2021;187:114393.
  81. Campos-Contreras AD, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in the hallmarks of cancer. Cells. 2020;9(7):1612.
  82. Agteresch HJ, Dagnelie PC, Rietveld T, van den Berg JW, Danser AH, Wilson JH. Pharmacokinetics of intravenous ATP in cancer patients. Eur J Clin Pharmacol. 2000;56(1):49–55.
  83. Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol. 2020;20(12):739–55.
  84. Urtreger AJ, Diament MJ, Ranuncolo SM, Del C Vidal M, Puricelli LI, Klein SM, et al. New murine cell line derived from a spontaneous lung tumor induces paraneoplastic syndromes. Int J Oncol. 2001;18(3):639–47.
  85. Boison D, Yegutkin GG. Adenosine metabolism: Emerging concepts for cancer therapy. Cancer Cell. 2019;36(6):582–96.
  86. Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304.