Rev Med UAS
Vol. 12: No. 2. Abril-Junio 2022
ISSN 2007-8013

Inestabilidad de Microsatélites como marcador biológico para la administración de Pembrolizumab

Microsatellites instability as a biological marker for the administration of Pembrolizumab

Fernández-Galindo Martha Alejandra1, Moreno-Ortiz José Miguel1, Contreras-Gutiérrez José Alfredo2, Martínez-Félix Jesús Israel3, Misael Guerrero-Valdez4, Beltrán-Ontiveros Saúl Armando2*.

  1. Instituto de Genética Humana “Dr. Enrique Corona Rivera”. Doctorado en Genética Humana. Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara. Guadalajara, Jalisco, México.
  2. Coordinación de Investigación, Centro de Investigación y Docencia en Ciencias de la Salud.
  3. Médico Adscrito al servicio de anestesiología, Centro de Investigación y Docencia en Ciencias de la Salud-Hospital Civil de Culiacán.
  4. Médico Adscrito al servicio de Ginecología y Obstetricia, Centro de Investigación y Docencia en Ciencias de la Salud-Hospital Civil de Culiacán.

*Autor de correspondencia: Dr. Saúl Armando Beltrán-Ontiveros
Coordinación de investigación del Centro de Investigación y Docencia en Ciencias de la Salud. UAS
Dirección: Eustaquio Buelna 91, Col. Burócrata, Código Postal: 80030 Culiacán Rosales, Sinaloa. México.
Teléfono: 667 3068465 saul.beltran@uas.edu.mx

DOI http://dx.doi.org/10.28960/revmeduas.2007-8013.v12.n2.008

Texto Completo PDF

Recibido 16 de enero 2022, aceptado 26 de marzo 2022


RESUMEN
Los microsatélites son secuencias cortas de ADN repetidas en tándem, distribuidas dentro del genoma, los cuales son propensos a errores en la replicación. El sistema Mismatch Repair (MMR), se encarga de identificar, señalar y reparar bases mal emparejadas, principalmente en secuencias repetitivas de ADN. La inactivación de cualquiera de los genes que codifican para las proteínas MMR puede provocar cambios en la longitud de los microsatélites causando un fenotipo hipermutable conocido como inestabilidad de microsatélites (MSI), vía de tumorigénesis bien establecida relacionada con la aparición, progresión y pronóstico de diversas neoplasias malignas. Debido a la gran cantidad de mutaciones somáticas, los tumores MSI tienen mayor sensibilidad a la inmunoterapia. La FDA ha aprobado un anticuerpo monoclonal como tratamiento para pacientes pediátricos y adultos con tumores sólidos MSI, el cual ha demostrado una actividad antitumoral sólida y duradera y un perfil de seguridad manejable contra varias neoplasias malignas avanzadas.
Palabras clave: Microsatélites, marcador biológico, Pembrolizumab

ABSTRACT
Microsatellites are short tandem repeating DNA sequences, distributed within the genome, that are prone to replication errors. The mismatch repair system (MMR) is responsible for identifying, signaling, and repairing mismatched bases, primarily in repetitive DNA sequences. Inactivation of any of the genes that encode MMR proteins can cause changes in the length of the microsatellites, and like a consequence a hypermutable phenotype known as microsatellite instability (MSI), a wellestablished tumorigenesis pathway related to the appearance, progression, and prognosis of various malignant neoplasms. Due to the large number of somatic mutations, MSI tumors are more sensitive to immunotherapy. The FDA has approved a monoclonal antibody as a treatment for pediatric and adult patients with MSI solid tumors, which has demonstrated robust and long-lasting antitumor activity and a manageable safety profile against various advanced malignancies.
Keywords: Microsatellites, biological marker, Pembrolizumab


REFERENCIAS

  1. Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget. 2017;8(67):112103-112115. Published 2017 Dec 1. doi:10.18632/oncotarget.22783
  2. De' Angelis GL, Bottarelli L, Azzoni C, De´Angelis N, Leandro G, Di Mario F, et al. Microsatellite instability in colorectal cancer. Acta Biomed. 2018;89(9-S):97-101. Published 2018 Dec 17. doi:10.23750/abm.v89i9-S.7960
  3. Kim DG, An JY, Kim H, Shin SJ, Choi S, Seo WJ, et al. Clinical Implications of Microsatellite Instability in Early Gastric Cancer. J Gastric Cancer. 2019;19(4):427-437. doi:10.5230/jgc.2019.19.e38
  4. Jiricny J. Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012633. Published 2013 Apr 1. doi:10.1101/cshperspect.a012633
  5. Ratti M, Lampis A, Hahne JC, Passalacqua R, Valeri N. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci. 2018;75(22):4151-4162. doi:10.1007/s00018-018-2906-9
  6. Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget. 2017;8(67):112103-112115. Published 2017 Dec 1. doi:10.18632/oncotarget.22783
  7. Yang G, Zheng RY, Jin ZS. Correlations between microsatellite instability and the biological behaviour of tumours. J Cancer Res Clin Oncol. 2019;145(12):2891-2899. doi:10.1007/s00432-019-03053-4
  8. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem. 2014;60(9):1192-1199. doi:10.1373/clinchem.2014.223677
  9. Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol. 2015;89(6):899-921. doi:10.1007/s00204-015-1474-0
  10. Choi YY, Bae JM, An JY, Kwong IG, Cho I, Shin HB, et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J Surg Oncol. 2014;110(2):129-135. doi:10.1002/jso.23618
  11. Smyth EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir Z, et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017;3(9):1197-1203. doi:10.1001/jamaoncol.2016.6762
  12. de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 2010;28(20):3380-3387. doi:10.1200/JCO.2009.27.0652
  13. Yan L, Zhang W. Precision medicine becomes reality-tumor type-agnostic therapy. Cancer Commun (Lond). 2018;38(1):6. Published 2018 Mar 31. doi:10.1186/s40880-018-0274-3
  14. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types [published correction appears in Nat Med. 2017 Oct 6;23 (10 ):1241] [published correction appears in Nat Med. 2018 Apr 10;24(4):525]. Nat Med. 2016;22(11):1342-1350. doi:10.1038/nm.4191
  15. Seo HM, Chang YS, Joo SH, Kim YW, Park YK, Hong SW, et al. Clinicopathologic characteristics and outcomes of gastric cancers with the MSI-H phenotype. J Surg Oncol. 2009;99(3):143-147. doi:10.1002/jso.21220
  16. Murphy MA, Wentzensen N. Frequency of mismatch repair deficiency in ovarian cancer: a systematic review. This article is a US Government work and, as such, is in the public domain of the United States of America. Int J Cancer. 2011;129(8):1914-1922. doi:10.1002/ijc.25835
  17. Sohn BH, Hwang JE, Jang HJ, Lee HS, Oh SC, Shim JJ, et al. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin Cancer Res. 2017;23(15):4441-4449. doi:10.1158/1078-0432.CCR-16-2211
  18. Janjigian YY, Sanchez-Vega F, Jonsson P, Chatila WK, Hechtman JF, Ku GY, et al. Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discov. 2018;8(1):49-58. doi:10.1158/2159-8290.CD-17-0787
  19. Agostini M, Enzo MV, Morandi L. A ten markers panel provides a more accurate and complete microsatellite instability analysis in mismatch repair-deficient colorectal tumors. Cancer Biomark. 2010;6(1):49-61. doi:10.3233/CBM-2009-0118
  20. Haghighi MM, Javadi GR, Parivar K. Frequent MSI mononucleotide markers for diagnosis of hereditary nonpolyposis colorectal cancer. Asian Pac J Cancer Prev. 2010;11(4):1033-1035
  21. Suraweera N, Duval A, Reperant M. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterol. 2002;123(6):1804-1811. doi:10.1053/gast.2002.37070
  22. Buhard O, Suraweera N, Lectard A, Duval A, Hamelin R. Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis Markers. 2004;20(4-5):251-257. doi:10.1155/2004/159347
  23. Buhard O, Cattaneo F, Wong YF. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol. 2006;24(2):241-251. doi:10.1200/JCO.2005.02.7227
  24. Goel A, Nagasaka T, Hamelin R, Boland CR. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers [published correction appears in PLoS One. 2010;5(3). doi: 10.1371/annotation/572bb6d3-0315-40b1-a6d7-ce818809b5ea]. PLoS One. 2010;5(2):e9393. Published 2010 Feb 24. doi:10.1371/journal.pone.0009393
  25. Luchini C, Bibeau F, Ligtenberg MJL. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232-1243. doi:10.1093/annonc/mdz116
  26. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin Cancer Res. 2019;25(13):3753-3758. doi:10.1158/1078-0432.CCR-18-4070
  27. Kok M, Chalabi M, Haanen J. How I treat MSI cancers with advanced disease. ESMO Open. 2019;4(Suppl 2):e000511. Published 2019 May 21. doi:10.1136/esmoopen-2019-000511
  28. Kwok G, Yau TC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccin Immunother. 2016;12(11):2777-2789. doi:10.1080/21645515.2016.1199310
  29. McDermott J, Jimeno A. Pembrolizumab: PD-1 inhibition as a therapeutic strategy in cancer. Drugs Today (Barc). 2015;51(1):7-20. doi:10.1358/dot.2015.51.1.2250387
  30. Selvajaran G. Pembrolizumab: The Nut Cracker. Indian J Med Paediatric Oncology. 2020;41(3):393-396. doi:10.4103/ijmpo.ijmpo_37_20
  31. Gokare P, Lulla AR, El-Deiry WS. MMR-deficiency and BRCA2/EGFR/NTRK mutations. Aging (Albany NY). 2017;9(8):1849-1850. doi:10.18632/aging.101275
  32. Medina PJ, Adams VR. PD-1 Pathway Inhibitors: Immuno-Oncology Agents for Restoring Antitumor Immune Responses. Pharmacotherapy. 2016;36(3):317-334. doi:10.1002/phar.1714
  33. van Vugt MJH, Stone JA, De Greef RHJMM, Snyder ES, Lipka L, Turner DC, et al. Immunogenicity of pembrolizumab in patients with advanced tumors. J Immunother Cancer. 2019;7(1):212. Published 2019 Aug 8. doi:10.1186/s40425-019-0663-4
  34. Chang L, Chang M, Chang HM, Chang F. Microsatellite Instability: A Predictive Biomarker for Cancer Immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26(2):e15-e21. doi:10.1097/PAI.0000000000000575
  35. Sidaway P. MSI-H: a truly agnostic biomarker?. Nat Rev Clin Oncol. 2020;17(2):68. doi:10.1038/s41571-019-0310-5
  36. Freshwater T, Kondic A, Ahamadi M, Li CH, de Greef R, de Alwis D, et al. Evaluation of dosing strategy for pembrolizumab for oncology indications. J Immunother Cancer. 2017;5:43. Published 2017 May 16. doi:10.1186/s40425-017-0242-5
  37. Goodman AM, Sokol ES, Frampton GM, Lippman SM, Kurzrock R. Microsatellite-Stable Tumors with High Mutational Burden Benefit from Immunotherapy. Cancer Immunol Res. 2019;7(10):1570-1573. doi:10.1158/2326-6066.CIR-19-0149
  38. Duffy MJ, Crown J. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clin Chem. 2019;65(10):1228-1238. doi:10.1373/clinchem.2019.303644
  39. Rüschoff J, Baretton G, Bläker. MSI testing : What's new? What should be considered?. MSI-Testung : Was ist neu? Was ist zu beachten?. Pathologe. 2021;42(Suppl 1):110-118. doi:10.1007/s00292-021-00948-3
  40. Yamamoto H, Imai K. An updated review of microsatellite instability in the era of next-generation sequencing and precision medicine. Semin Oncol. 2019;46(3):261-270. doi:10.1053/j.seminoncol.2019.08.003