Rev Med UAS
Vol. 11: No. 3. Julio-Septiembre 2021
ISSN 2007-8013

¿Puede la tecnología 5g afectar a la salud?

Can the 5G technology affect health?

Leticia Verdugo-Díaz1,*

  1. Laboratorio de Bioelectromagnetismo, Departamento de Fisiología, Facultad de Medicina, UNAM. CdMx, México.

*Autor de correspondencia:Dra. Leticia Verdugo-Díaz
Edificio A, 5º piso, Ciudad Universitaria, CdMx 04510, México.
Tel. 5556179831. Email: leticia@unam.mx

DOI http://dx.doi.org/10.28960/revmeduas.2007-8013.v11.n3.008

Texto Completo PDF

Recibido 23 de Octubre 2020, aceptado 15 de Abril 2021


RESUMEN
En los últimos meses se han publicado comentarios que relacionan la nueva tecnología de comunicación denominada 5G con daños a la salud humana. La inquietud que genera y que la hace diferente de las anteriores tecnologías es que tanto las antenas como los aparatos que usan ondas milimétricas deben de estar más cerca de los usuarios, lo cual puede afectar los patrones de exposición conocidos. En el presente trabajo, se hace un breve resumen histórico de las normas y guías publicadas, enfocándose a la reciente inquietud respecto al uso de la tecnología 5G y su relación con la salud humana.
Palabras clave: ondas milimétricas, precaución, radiofrecuencias, teléfonos celulares.

ABSTRACT
Recently, comments published that link the new communication 5G technology with damage to human health. The concern that 5G technology generates and that makes it different from previous technologies is that both antennas and devices that use millimeter waves must be closer to users, which can affect known exposure patterns. In this work, a brief historical summary of the published norms and guides, focusing on the recent concern regarding the use of 5G technology and its relationship with human health.
Keywords: millimeter waves, precaution, radio frequencies, cell phones.


REFERENCIAS

  1. Organización Mundial de la Salud.OMS. Temas de Salud. Campos electromagnéticos [consultado el 30 de septiembre 2020]. Disponible en: https://www.who.int/topics/electromagnetic_fields/es/
  2. Unión Internacional de Telecomunicaciones. UIT. [consultado el 30 de septiembre 2020]. Disponible en: https://www.itu.int/es/about/Pages/default.aspx.
  3. 5G Americas. 5G Spectrum Recommendations-Abril 2017. Disponible en: http://www.5gamericas.org/- files/9114/9324/1786/5GA_5G_Spectrum_Recommendations_2017_FINAL.pdf
  4. International Agency for Research on Cancer. IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. PRESS RELEASE. 2011; N° 208. Disponible en: https://www.iarc.fr/wp-content/uploads/2018/07/pr208_E.pdf.
  5. The International Commission on Non-Ionizing Radiation Protection. ICNIRP. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020; 118:483–524. doi.org/10.1097/HP.0000000000001210.
  6. Pall ML. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health. 2015;30(2):99-116. doi: 10.1515/reveh-2015-0001.
  7. Hardell L, Oremus M, Soskolne CL. Risks to Health and Well-Being from Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front. Public Health. 2019; 7:223. doi: 10.3389/fpubh.2019.00223.
  8. International Agency for Research on Cancer. IARC monographs on the identification of carcinogenic hazards to human. Disponible en: https://monographs.iarc.fr/
  9. National Council on Radiation Protection and Measurements. NCRP. Report No. 086 – Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields (1986). Disponible en: https://aapm.org/pubs/NCRP/detail.asp.
  10. EMF-PORTAL. Electromagnetic fields (WHO EHC Monograph No. 137) guideline World Health Organization (WHO) 1993, WHO Environmental Health Criteria 137: 1-146. Disponible en: https://www.emf-portal.org/en/article/15261.
  11. Institute of Electrical and Electronics Engineers. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. In IEEE Std C95.1‐2005 (Revision of IEEE Std C95.1‐1991). Disponible en: https://ieeexplore.ieee.org/document/1626482.
  12. The International Commission on Non-Ionizing Radiation Protection. ICNIRP Statement on EMF-emitting new technologies. Health Physics. 2008; 94(4):376‐392. Disponible en: https://www.icnirp.org/cms/upload/publications/ICNIRPNewTech.pdf.
  13. Scientific Committee on Emerging and Newly Identified Health Risks. SCENIHR. Possible effects of Electromagnetic Fields (EMF) on Human Health. 2007. Disponible en: https://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_007.pdf.
  14. Scientific Committee on Emerging and Newly Identified Health Risks. SCENIHR. Health Effects of Exposure to EMF. 2009. Disponible en: https://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf.
  15. INTERPHONE Study Group. Brain tumor risk in relation to mobile telephone use: Results of the INTERPHONE international case control study. Int J Epidemiol. 2010; 39:675–694. doi.org/10.1093/ije/dyq079.
  16. International Agency for Research on Cancer. IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum. 2013; Vol.102(Pt 2):1–460. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono102.pdf.
  17. World Health Organization. WHO. Model Legislation for Electromagnetic Fields Protection. Disponible en: https://www.who.int/peh-emf/standards/EMF_model_legislation%5B1%5D.pdf.
  18. Lin JC. Clear evidence of cell‐phone RF radiation cancer risk. IEEE Microw Mag. 2018; 19:16–24. https://avaate.org/IMG/pdf/lin_2018.pdf.
  19. Barnes F, Greenebaum B. Setting Guidelines for Electromagnetic Exposures and Research Needs. Bioelectromagnetics. 2020; 41(5):392-397. doi: 10.1002/bem.22267.
  20. U.S. Food & Drug Administration. FDA. Review of Published Literature between 2008 and 2018 of Relevance to Radiofrequency Radiation and Cancer. 2020. Disponible en: https://www.fda.gov/media/135043/download.
  21. The International Commission on Non-Ionizing Radiation Protection. ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998; 74 (4):494-522. https://pubmed.ncbi.nlm.nih.gov/9525427/
  22. The International Commission on Non-Ionizing Radiation Protection. ICNIRP statement on the “guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHZ). Health Phys. 2009b; 97:257–258. doi: 10.1097/HP.0b013e3181aff9db.
  23. Institute of Electrical and Electronics Engineers. IEEE. Standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. Disponible en: https://ieeexplore.ieee.org/document/8859679.
  24. The International Commission on Non-Ionizing Radiation Protection. ICNIRP. Differences between the ICNIRP (2020) and previous guidelines. Disponible en: https://www.icnirp.org/en/differences.html
  25. Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ Pollut. 2018; 242(Pt A):643-58. doi: 10.1016/j.envpol.2018.07.019.
  26. Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, et al. Risks to Health and Well-Being from Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health. 2019; 7:223. doi: 10.3389/fpubh.2019.00223.
  27. Falcioni L, Bua L, Tibaldi E, Lauriola M, De Angelis L, Gnudi F, et al. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ Res. 2018; 165:496–503. doi: 10.1016/j.envres.2018.01.037.
  28. Smith‐Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, et al. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ Mol Mutagen. 2020; 61:276–90. doi: 10.1002/em.22343.
  29. Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life Conditions. Toxicol Lett. 2020; 323:35-40. doi: 10.1016/j.toxlet.2020.01.
  30. Oceania Radiofrequency Scientific Advisory Association. ORSAA. [consultado el 30 de septiembre 2020]. Disponible en: https://www.orsaa.org/about-us.html
  31. Leach V, Weller S, Redmayne M. A novel database of bio-effects from non-ionizing radiation. Rev Environ Health. 2018; https://doi.org/10.1515/reveh-2018-0017.
  32. Shckorbatov YG, Grigoryeva N, Shakhbazov VG, Grabina VA, Bogoslavsky AM. Microwave irradiation influences on the state of human cell nuclei. Bioelectromagnetics. 1999; 19:414–9. doi: 10.1002/(SICI)1521-186X.
  33. Szabo I, Rojavin MA, Rogers TJ, Ziskin MC. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics. 2001; 22(5):358–64. doi: 10.1002/bem.62.
  34. Szabo I, Manning MR, Radzlevsky AA, Wetzel MA, Rogers TJ, Ziskin MC. Low Power Millimeter Wave Irradiation Exerts No Harmful Effect on Human Keratinocytes In Vitro. Bioelectromagnetics. 2003; 24(3):165–73. doi: 10.1002/bem.10077.
  35. Chen Q, Zeng QL, Lu DQ, Chiang H. Millimeter Wave Exposure Reverses TPA Suppression of Gap Junction Intercellular Communication in HaCaT Human Keratinocytes, Bioelectromagnetics. 2004; 25(1):1–4. doi: 10.1002/bem.10140.
  36. Beneduci A, Chidichimo G, De Rose R, Filippelli L, Straface SV, Venuta S. Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Res. 2005; 25(2A):1023–8.
  37. Beneduci A, Chidichimo G, Tripepi S, Perrotta E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res. 2005; 25(2A):1009–13.
  38. Szabo I, Kappelmayer J, Alekseev SI, Ziskin MC. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics. 2006; 27(3):233–44.
  39. Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Gover A, Korenstein R. Terahertz Radiation Increases Genomic Instability in Human Lymphocytes, Radiat. Res, 2008; 170(2):224–34. doi: 10.1667/RR0944.1.
  40. Beneduci A. Evaluation of the Potential In Vitro Antiproliferative Effects of Millimeter Waves at Some Therapeutic Frequencies on RPMI 7932 Human Skin Malignant Melanoma Cells. Cell Biochem Biophys. 2009; 55:25-32. doi: 10.1007/s12013-009-9053-8.
  41. Nicolaz CN, Zhadobov M, Desmots F, Sauleau R, Thouroude D, et al. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol Toxicol. 2009: 25(5);471–8. doi: 10.1007/s10565-008-9101-y.
  42. Nicolaz CN, Zhadobov M, Desmots F, Ansart A, Sauleau R, et al. Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes. Bioelectromagnetics. 2009; 30(5):365–73. doi: 10.1002/bem.20481.
  43. Shckorbatov YG, Pasiuga VN, Kolchigin NN, Grabina VA, Batrakov DO, et al. The influence of differently polarised microwave radiation on chromatin in human cells. Int J Rad Biol. 2009; 85:322-9. doi: 10.1080/09553000902781113.
  44. Zhadobov M, Nicolaz CN, Sauleau R, Desmots F, Thouroude D, et al. Evaluation of the Potential Biological Effects of the 60-GHz Millimeter Waves Upon Human Cells. IEEE Transactions on Antennas and Propagation, 2009; 57:2949-55, doi: 10.1109/TAP.2009.2029308.
  45. Shckorbatov YG, Pasiuga VN, Goncharuk EI, Petrenko TP, Grabina VA, et al. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts. J Zhejiang Univ Sci B. 2010;11(10):801-5. doi: 10.1631/jzus.B1000051. PMID: 20872988; PMCID: PMC2950243.
  46. Le Quément C, Nicolaz NC, Zhadobov M, Desmots F, Sauleau R, et al. Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics. 2012; 33(2): 147–58. doi: 10.1002/bem.20693.
  47. Le Quément C, Nicolaz CN, Habauzit D, Zhadobov M, Sauleau R, Le Dréan Y. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression. Bioelectromagnetics. 2014; 35(6):444–51. doi: 10.1002/bem.21864.
  48. Habauzit D, Le Quément C, Zhadobov M, Martin C, Aubry M, et al. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure. PLoS One. 2014; 9(10). doi: 10.1371/journal.pone.0109435.
  49. Volkova NA., Pavlovich EV, Gapon AA, Nikolov OT. Effects of Millimeter-Wave Electromagnetic Exposure on the Morphology and Function of Human Cryopreserved Spermatozoa. Bull Exp Bio. Med. 2014;157(5):574–6. doi: 10.1007/s10517-014-2618-6.
  50. Koyama S, Narita E, Shimizu Y, Suzuki Y, Shiina T, et al. Effects of long-term exposure to 60 GHz millimeter-wavelength radiation on the genotoxicity and heat shock protein (HSP) expression of cells derived from human eye. Int J Environ Res. Public Health. 2016; 13(8). doi: 10.3390/ijerph13080802.
  51. Soubere-Mahamoud Y, Aite M, Martin C, Zhadobov M, Sauleau R, et al. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome. PLoS One. 2016; 11(8):e0160810. doi: 10.1371/journal.pone.0160810.
  52. Vlasova II, Mikhalchik EV, Gusev AA, Balabushevich NG, Gusev SA, Kazarinov KD. Extremely high-frequency electromagnetic radiation enhances neutrophil response to particulate agonists. Bioelectromagnetics. 2018; 39(2):144–55. doi: 10.1002/bem.22103.
  53. Yaekashiwa N, Otsuki S, Hayashi S, Kawase K. Investigation of the non-thermal effects of exposing cells to 70-300 GHz irradiation using a widely tunable source. J Radiat Res. 2018; 59(2):116–21. doi: 10.1093/jrr/rrx075.
  54. Le Pogam P, Le Page Y, Habauzit D, Doué M, Zhadobov M, et al. Untargeted metabolomics unveil alterations of biomembranes permeability in human HaCaT keratinocytes upon 60 GHz millimeter-wave exposure. Sci. Reports. 2019; 9:9343. doi: 10.1038/s41598-019-45662-6.
  55. Radzievsky AA, Rojavin MA, Cowan A, Ziskin MC. Suppression of pain sensation caused by millimeter waves: a double-blinded, cross-over, prospective human volunteer study. Anesth Analg. 1999; 88(4):836–40.
  56. Walters TJ, Blick DW, Johnson LR, Adair ER, Foster KR. Heating and pain sensation produced in human skin by millimeter waves: comparison to a simple thermal model. Health Phys. 2000; 78(3):259-67. doi: 0.1097/00004032-200003000-00003.
  57. Alekseev S. I., A. A. Radzievsky, I. Szabo, and M. C. Ziskin, “Local heating of human skin by millimeter waves: Effect of blood flow,” Bioelectromagnetics, vol. 26, no. 6, pp. 489–501. 2005. Doi:10.1002/bem.20118.
  58. Müller J, Hadeler KP, Müller V, Waldmann J, Landstorfer FM, et al. Influence of low power cm-mm-microwaves on cardiovascular function. Int J Env Health Res. 2004; 14(5):331–41. doi: 10.1080/09603120400004006.
  59. Egot-Lemaire SJ.-P, Ziskin MC. Dielectric properties of human skin at an acupuncture point in the 50-75 GHz frequency range: a pilot study. Bioelectromagnetics. 2011; 32(5): 360–6. doi: 10.1002/bem.20650.
  60. Partyla T, Hacker H, Edinger H, Leutzow B, Lange J, Usichenko T. Remote Effects of Electromagnetic Millimeter Waves on Experimentally Induced Cold Pain: A Double-Blinded Crossover Investigation in Healthy Volunteers. Anesth Analg. 2017; 124(3): 980–5. doi: 10.1213/ANE.0000000000001657.
  61. Gibbons JA. Localized Heat Urticaria from 95-GHz Millimeter Wave. Aerosp Med Hum Perform. 2017; 88:586-8. doi: 10.3357/AMHP.4707.
  62. Leszczynski D. Physiological effects of millimeter-waves on skin and skin cells: an overview of the to-date published studies. Rev Environ Health. 2020; 24. doi: 10.1515/reveh-2020-0056.
  63. Simkó M, Mattsson MO. 5G Wireless Communication and Health Effects-A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. Int J Environ Res Public Health. 2019; 16(18):3406. doi: 10.3390/ijerph16183406.
  64. Halgamuge MN. Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagn Biol Med. 2017; 36(2):213-235. doi: 10.1080/15368378.2016.1220389.
  65. Czerwiński M, Vian A, Lázaro A. The influence of bioactive mobile telephony radiation at the level of a plant community – Possible mechanisms and indicators of the effects. Ecological Indicators, Elsevier, 2019, 108, ff10.1016/j.ecolind.2019.105683ff. ffhal-02625424f.
  66. Cucurachi S, Tamis WL, Vijver MG, Peijnenburg WJ, Bolte JF, de Snoo GR. A Review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int. 2013; 51:116–140. doi: 10.1016/j.envint.2012.10.009.
  67. Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis. Environ Sci Pollut Res Int. 2019; 26(30):30693-710. doi: 10.1007/s11356-019-06278-5.
  68. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 2016; 35(2):186-202. doi: 10.3109/15368378.2015.1043557.
  69. Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett. 2020; 323:35-40. doi: 10.1016/j.toxlet.2020.01.020.
  70. Adair RK. Biophysical Limits on Athermal Effects of RF and Microwave Radiation. Bioelectromagnetics. 2003; 24:39-48.
  71. Ledoigt, G., Belpomme, D. Cancer induction molecular pathways and HF-EMF irradiation. Adv Biol Chem. 2013; 3:177-86. doi:10.4236/abc.2013.32023.
  72. Montoya RD. Magnetic fields, radicals and cellular activity. Electromagn Biol Med. 2017; 36(1):102-13. doi: 10.1080/15368378.2016.1194291.
  73. Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ Pollut. 2018; 242(Pt A):643-58. doi: 10.1016/j.envpol.2018.07.019.
  74. Russell CL. 5 G wireless telecommunications expansion: Public health and environmental implications. Environ Res. 2018: 165:484-95. doi: 10.1016/j.envres.2018.01.016.
  75. Di Ciaula A. Towards 5G communication systems: Are there health implications? Int J Hyg Environ Health. 2018; 221(3):367-75. doi: 10.1016/j.ijheh.2018.01.011.
  76. Keller H. On the assessment of human exposure to electromagnetic Fields transmitted by 5g nr base stations. Health Physics. 2019; 117(5):541-5. doi: 10.1097/HP.0000000000001089.
  77. McClelland S, Jaboin JJ. The Radiation Safety of 5G Wi-Fi: Reassuring or Russian Roulette? Int J Radiat Oncol Biol Phys. 2018; 101(5):1274,-5 doi: 10.1016/j.ijrobp.2018.04.051.
  78. Hardell L, Nyberg R. Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Mol Clin Oncol. 2020; 12:247-57.